Integration: An Appropriate Approach for Inclusion of Nano Science and Technology into School Curriculum

Abstract: The main purpose of this paper, is to suggest an appropriate approach for including nano science and technology in school curriculum. To fulfill this goal, a number of countries that have included nano science and technology into their school curricula were studied. The study showed that the two kinds of curriculum integration approaches of multidisciplinary and interdisciplinary is promising for this inclusion. However, due to the some limitations associated with teachers and curriculum developers in this field, the multidisciplinary approach for integration of nano science and technology into chemistry, physics and biology courses, found to be an appropriate approach for curriculum development in this regard. Thus, the research findings suggest that to facilitate the inclusion of nano science and technology into the senior high school curriculum in Iran, the natural science courses of chemistry, physics and biology courses could serve the purpose right.

Key words: Nano science and technology, integration approach to curriculum development, natural science courses, senior high school.

Z. Mehraban (Ph.D)

he_mehraban@yahoo.com
مقدمه

در دهه‌های اخیر شاهد حضور فناوری‌های جدیدی بوده‌ایم که وجه مشترک همه آنها ایجاد تغییراتی در نحوه زندگی و ارتقاء کمی و کیفی سطح سلامت و اقتصاد مورد بوده است. این از علوم و فناوری‌های جدیدی که قدمت آن به سه دهه می‌رسد، علم و فناوری نانو می‌باشد. علم نانو، مطالعه پدیده‌ها و دستکاری مواد در مقیاس اتمی، مولکولی و ماکرومولکولی در محدوده 1 از 100 نانومتر از است که خواص مواد در این محدوده به دلیل کوچکی اندازه ذراتشان به میزان قابل توجهی در مقایسه با اندازه بزرگ‌تر متفاوت است. فناوری نانو نیز طراحی، شناسایی، تولید و کاربرد ساختارها، دستگاه‌ها و سامانه‌های است که اندازه آنها در محدوده نانومتری کنترل شده است (سند سیاست انجم سلطنتی بریتانیا، 2004).

علم نانو تلفیقی از علوم تجربی و مهندسی با نگرشی جدید است که پیش از این از زاویه دید دانشمندان این حوزه‌ها پنهان مانده بوده است که در آن برخی از اصول فیزیکی و شیمیایی از منظر مقیاس نانومتری مطرح گردیده‌اند. این تغییر پنهان مانده، در حقیقت بروز کردن فاصله میان فیزیک حالت جامد (ماده چگال یا مقیاس توده) و شیمیی کوانتوم (مقیاس اتمی) است. به این دلیل ماهیت بین رشته‌های این فناوری نوپدیده، پیشرفت آن نیز مستلزم انجام تحقیقات بین رشته‌ای است (کلانبرد، 2001).

اهمیت و اثرگذاری فناوری نانو به‌گونه‌ای است که در حال حاضر، تحولات و تأثیرات ناشی از این فناوری، تقریباً بر تمامی بخش‌های زندگی بشر سایه اندماخته است و از کوچک‌ترین تا بزرگ‌ترین امر زندگی فردی، اجتماعی، روابط اقتصادی و سیاسی حاکم بر جوامع در سطح خرد و کلان را تحت تأثیر خود قرار داده است (روکو و بین بریج، ۲۰۰۳) و انظار می‌روند که این تأثیر، در آینده نیز بیشتر شود.

بدین سبب، توجه به فناوری‌های نو در استان با بالاتری جمهوری اسلامی ایران مشهود است. در سند چشم‌انداز بیست ساله کشور جمهوری اسلامی (۱۳۸۵)، ایران در ۱۴۰۰ این گونه ترسیم

1. یک میلیارد متر برابر ۱۰۹ متر
2. Royal Society Policy document
3. Kenneth klabunde
4. Roco and Bainbridge
تلقیف رويکردی مناسب برای ورود علم و فناوری نانو به...

شده است «دست‌یافته به چاپگاه اول اقتصادی، علمی و فناوری در سطح منطقه آسیای جنوب غربی (شامل آسیای میانه، قفقاز، خاورمیانه و کشورهای همسایه) با تأکید بر چنین نرم‌افزاری و تولید علم، رشد پرستار و مستمر اقتصادی، ارتقاء نسبی سطح درآمد سرانه و رشدان به پیش‌گامی کامل... برخوردار از دانش پیشرفته، توانا در تولید علم و فناوری، متقنی بر سهم متریل منابع انسانی و سرمایه اجتماعی در تولید ملل». همچنین در فصل سوم سندرقه جامع علمی کشور از 1389 (129) تحت عنوان اثبات‌های علمی و فناوری کشور، در اثبات‌های الگویبخش فناوری، صرحاً تا نام فناوری‌های که این بسته است و در قسمت چهارم، راهبردهای کلیان ۱۰ و ۶ صرحاً به اصلاح و توجه نظام آموزش بهبیان تحقیق اهداف ذکر شده در این سند تصمیم شده است.

در راستای تحقیق اهداف سندرقه جامع علمی کشور، استاد راهبردی وزارت آموزش و پرورش نیز به مقوله فناوری توجه خاصی نموده‌اند. ازجمله، در سندر تحول بنادران آموزش و پرورش (۱۳۹۰) که علاوه بر تعیین ساختی با عنوان ساخت تعليم و تربیت علمی و فناوری، در سیاره‌ای هنوز آن نیز توجه به مقوله فناوری کاملا مشهد می‌باشد. همچنین در سندر برنامه‌ی جمپورهای اسلامی ایران (۱۳۹۱)، از جوزه‌های تربیت و پادگانی کار و فناوری و علوم تجدیدی به موضوع فناوری توجه شده است.

مورد فوق همگی می‌توانند تأیید بر این ادعا باشند که توجه و اهمیت به علم و فناوری نانو در سطح بالای علمی-پژوهشی و مطالعات عالی به‌خوبی صورت پذیرفته است و در سطوح تحصیلی قبل از دانشگاه نیز باید این توجه در خور توجه و مطالعات استاد بالادستی و همچنین چاپگاه کنونی ایران در علم و فناوری نانو باشد. با بررسی به عمل آمده از برنامه‌ی درسی‌شیعی، فیزیک و زیست‌شناسی دوره‌متوسطه و پیش‌دانشگاهی مشخص گردیده است که توجه به علم و فناوری نانو در محتوای درسی این کتابها قابل ملاحظه‌ی نمی‌باشد و تنهای اشیرات انگشت‌شماری به علم و فناوری نانو در محتوای کتاب‌های درسی مذکور بسنده شده است. (مهمانی ۱۳۹۱) که بدون شک این میزان توجه نیم‌تراند پاسخ‌گویی مطالعات استاد بالادستی نمی‌باشد.

1. در محتوای کتاب‌های چاپگاه چاپگاه در مورد مستقیم، فیزیک ۱ مورد مستقیم و ۱ مورد غیرمستقیم و در زیست‌شناسی ۱ مورد مستقیم و ۷ مورد غیرمستقیم به علم و فناوری نانو پرداخته شده است.
بررسی برنامه‌های درسی مدرس‌های علم و فناوری نانو در مقطع قبل از دانشگاه در کشورهای پیشرفته، نشانگر این موضوع است که این توجه در دو حوزه علم نانو و فناوری نانو صورت پذیرفته است. به همین دلیل در برنامه‌های درسی کشورهای مدرک کوزوو، علاوه بر در نظر داشتن استانداردهای آموزش علوم به استانداردهای سواد فناوری نیز توجه شده است. یکی از استانداردهای مدون آموزش علوم که توسط برخی از کشورها نیز به آن ارجاع می‌شود، استانداردهای تعیین شده توسط بنیاد ملی علوم آمریکا تحت عنوان «استانداردهای ملی آموزش علوم» نیز به آن ارجاع می‌شود.

استانداردهای انجام شده در زمینه برنامه درسی مدرس‌های فناوری در ایالات متحده آمریکا بر اساس استانداردهای تعیین شده برای سواد فناوری تنظیم شده است. این سند توسط انجمن بین‌المللی آموزش فناوری در سال 2000 و بر اساس طرح ملی «فناوری برای همه آمریکاییها» تهیه، تدوین و منتشر گردیده است.

تفلیق: روش کدی مناسب برای سازمان‌دهی محتوای فناوری در برنامه‌های درسی

آنچه که در مواجهه با مسئله ورود علم و فناوری نانو مهم و قابل توجه می‌باشد، این است که علم و فناوری نانو چگونه باید به محتوای برنامه‌های درسی ورود نماید؟ و یا به ابزاری رویکرد سازمان‌دهی علم و فناوری نانو در محتوای کتاب‌های درسی باید چگونه باشد؟ این رویکرد باید به گونه‌ای انتخاب شود که علم و فناوری نانو به عضویت یک موضوع مطالبی جدید در صدد یافتن موضوعی مستقل در برنامه درسی متراکم دانش آموزان باشد. چرا که در این صورت مجبور به هله دادن بقیه موضوعات و بازمودن جایی برای خواهد شد که نتیجه‌ای که متراکم شدن هر چه بیشتر موضوعات درسی خواهد بود. سازمان‌دهی محتوای علم و فناوری نانو باید به

1. از جمله استرالیا
2. National Science Education Standards, National Committee on Science Education Standards and Assessment, National Research Council, 1996
3. Standards for Technological Literacy (STL)
4. International Technology Education Association (ITEA)
تلیفیق روابط مناسب برای ورود علم و فناوری نانو به...

شیوهای باشد که موضوعاتی را که داشت آموزان در سایر کلاس‌های درسی فرا می‌گیرند، تقویت و تکمیل نماید. در این صورت است که محتوای سازمان‌دهی شده، می‌توانند علاوه بر ایجاد درکی مناسب از علم و فناوری نانو، در راستای درک و فهم سایر موضوعات درسی نیز کمک رسانی نماید.

چگونگی سازمان‌دهی محتوای برنامه‌های درسی برای رشته‌های متعدد و مختلف در حقيقة

یکی از مسائل پیش‌روی برنامه‌ی برتراند درسی می‌باشد و بیش از یک قرن است که توجه

مختصات این حوزه را با شدت و ضعف، و افت و کاهش‌ها به خود معطوف داشته است.

معرفی و ارائه برنامه درسی تلفیقی رویکردی مناسب برای مواجه به این مستلهمی می‌باشد.

در مورد چگونگی پیاده‌اندیش تلفیق چندی می‌گوید "اندیشه تلفیق در برنامه درسی از سال 1895 در نشست انجمن هربرت به‌طور رسماً در مباحث تربیتی مطرح

شد. به طور کلی از اوائل قرن نوزدهم، حرکت‌های اصلاحی در تعلیم و تربیت، در پی

جبش‌های اجتماعی و سیاست‌های اسلامی در دست کم، سه جنبش

اصلاحی قابل شناسایی است. این سه جنبش اصلاحی با وجود برخی اختلافات، هم‌های

برنامه تلفیقی را به عنوان یک مطالعه جهت سازمان‌دهی تجربیات تربیتی مورد تأکید قرار

می‌دهند. وی در ادامه این سه جنبش را جنبش‌های متأثر از انگلیسی‌زبانی صنعت و توسعت تجارت,

رومانیسم، روسو تا مطالعات استانداردی هال درباره کودک و تکامل اجتماعی انسانی و ایجاد

آزادی خواهانه و حرکت‌های سیاسی برای توسعت دموکراسی معرفی می‌نماید.

هایپنیز (1976) برخلاف پیش‌های جنرال زمان خوشی، در مورد برنامه درسی تلفیقی

این گونه استدلال که تلفیق چپ‌ی یا راست تربیت‌صفر سطحی موضوعی پیرامون یک

مضمون مشترک می‌باشد. وی می‌گوید تلفیق برنامه درسی به معنای تلفیق شخصی باشد. او

رشد تربیتی فرد را از طریق سه مرحله 1- بسط، 2- تماز و 3- نهایتاً تلفیق، محقق می‌داند و از

مرحله آخر تحت عنوان فردی یادگیری طبیعی یاد می‌کند.

دریک (2004) در پاسخ به این سوال که برنامه‌ی درسی تلفیقی چیست؟ می‌گوید: "در

ساده‌ترین مفهوم می‌توان گفت که پیرامون ارتباطی است ولی چه نوع ارتباطی؟ و در میان کدام

1. Theme
2. Drake
مهم‌نمایی (۱۳۷۷) در بیان مفهوم تلفیق می‌گوید: «تلفیق به شیوه‌ای می‌گویند که در آن بخش‌های وابسته به هم در یک کل بزرگتر مرتب می‌شوند و یا یک رابطه متوانزان با یکدیگر برقرار می‌کند.» وی می‌افزاید: «تلفیق به معنای درهم آمیختن و ارتباط دادن حوزه‌های محتملی است که غالباً مجزا از یکدیگر در برنامه دستی مدارس گنجانده می‌شود. طراحی برنامه‌های تلفیقی با روش‌هایی گوناگون صورت گرفته که هر یک وپذیرگی ها، قابلیت‌ها و امکانات خاصی دارند... به عبارت روش‌نر، تلفیق برنامه دستی درهم آمیختن محتمل به برنامه دستی به‌منظور تحقق هدف انسجام تجربیات بادگیری دانش‌آموزان است» (مهم‌نمایی و احمدی، ۱۳۸۰). از مجموع نظارت پیرامون مفهوم تلفیق، دو دیدگاه قابل تبایز است. یک دیدگاه غالب که در آن تلفیق محتما، فرآیندها و شیوه‌های برنامه دستی را توصیف برنامه ریزان برای یادگیرندگان متعدد می‌داند و تلفیق از بیرون یک گفت می‌شود و دیدگاه معدود که تلفیق شخصی و روانشناسی توسط خود یادگیرنده را حاصل اهمیت می‌داند و به تلفیق از درون اطلاق یک می‌شود (احمدی، ۱۳۹۰).

در طول ۱۰۰ سال گذشته نظرونه پردیسی این حوزه دست‌نبندی‌های متفاوتی را در خصوص روش‌های تلفیقی ارائه داده‌اند. اگر چه آنها طبقه‌بندی‌هایی را با نام‌های متغاوی مطرح

1. Robin J. Fogarty
2. Integration from without
3. Integration from within
نمودهاند، ولی تعاریفی که برای این دسته بندی‌ها داده‌اند از تشباهاتی نیز برخوردار است (دریک، ۲۰۰۴). به عنوان مثال: شویرت (۱۹۸۶) پنج شکل موضوعات مجزا، حوزه‌های وسیع، پروژه‌ها، برنامه درسی مرکزی و تلفیق را برای سازمان‌دهی برنامه‌های خود به آنها دسته‌بندی کرده و همانند هنتر و همکارانش (۱۹۸۸) نیز اشکال شش گانه برنامه درسی تصادفی، تقویت شده و تمرین، جاسایی شده در درون حوزه محتوای دیگر، همسازی، فرآیندها و سازمان‌دهی مضمونی یا موضوعی، را برای طراحی و سازمان‌دهی برنامه درسی معرفی می‌نمایند. فوگارتی (۱۹۹۱) به مدل تلفیق و سازمان‌دهی به شرح پراکندگی با سلولی، مرتب، تو در تو، آشیانه‌ای، متوازی، اشتراکی، تبیده، دانه تسببی، ادغام، یا تلفیق، غوطه‌وری و شبکه‌ای را ارائه نموده است. جیکبز (۱۹۸۹ و ۱۹۹۱) نیز روش‌های رهگیری راه‌رسی محور، رشته‌های موازی، دروس و واحدهای مکمل یکدیگر را (چند رشته‌ای)، مبنا رشته‌ای، مدال

1. Schubert
2. Separate Subjects
3. Broad Field
4. Projects
5. Core Curriculum
6. Integration
7. Hunter
8. Incidental
9. Reinforcement and Practice
10. Embedding
11. Coordination
12. Processes
13. Thematic or topic Organization
14. Fogarti
15. Fragmented Model or Cellular Model
16. Connected Model
17. Nested Model
18. Sequenced Model
19. Shared Model
20. Webbed Model
21. Threaded Model
22. Integrated Model
23. Immersed Model
24. Networked Model
25. Jacobs
26. Discipline Based
27. Parallel Discipline
28. Complementary Discipline Units or Courses
29. Interdisciplinary Courses

11
فصلنامه مطالعات برنامه درسی، شماره ۴۴، سال نهم، پاییز ۱۳۹۳

روز تلقیف شده و برنامه کامل را برای سازمان‌دهی برنامه درسی ذکر می‌نماید. وی تفاوت میان میان تلقیف چند رشته‌ای و میان رشته‌ای را این‌گونه بیان می‌کند که در چند رشته‌ای، الحاق در دو یا سه رشته صورت می‌گیرد، نه در تمام رشته‌ها. اجازه بدهید تکرار کنم یا محدودیت

وسعی کسی از آنها نگرشته شودند، وارس (۱۹۹۱) نیز روابط‌های تلقیف‌های تلفیقی همبستگی را، تکبیری، مركب سازمان‌پایه، دانش‌آموز محور، یا مركبی سازمان‌پایه را برای سازمان‌دهی برنامه درسی ارائه داده است. کیس (۱۹۹۲)، در بیان تلقیف به تلقیف محتملو، تلقیف مهارت‌ها و اندازه‌ها، تلقیف مدرسه و فرد و تلقیف کل گرا (۲۰۰۲) نیز اشکال چند رشته‌ای، میان رشته‌ای و فارغ‌التحصیل را برای سازمان‌دهی برنامه درسی نشان می‌دهد. مارک‌تن-نیپ (۱۹۹۵) برنامه درسی میان رشته‌ای را تلقیف هم‌ارزه و تلقیف بین تجربیات دانش‌آموز، جای دروغی دانش‌آموز و برنامه درسی مدرسه‌ای را برای

سازمان‌دهی برنامه درسی بیان می‌نماید.

نگارنده‌ای، این مقاله به منظور ایجاد وحدت و یکپارچگی بین آرا ارائه شده از سوی متخصصان، رویکردهای سازمان‌دهی محتمل‌ای برنامه درسی تلقیفی را بر اساس فرد یا افراد سازمان‌دهی برنامه طبقه‌بندی نموده است، به‌گونه‌ای که جمع‌کننده و جوهر مشترک و در برگیرنده آراء متقاوت صاحب نظران باشد. بر این اساس فرد یا افراد سازمان‌دهی گان برنامه درسی تلقیفی

1. Integrated Day model
2. Complete Program
3. Vars
4. Correlation
5. Fusion
6. Structured Core
7. Student Center or Unstructured Core
8. Case
9. Integration Skills and Processes
10. Integration of School and self
11. Holistic Integration
12. Multidisciplinary
13. Transdisciplinary / Supradisciplinary / Real world
14. Martin Kniep
15. Interdisciplinary Curriculum
16. Integration around Skills
17. Integration between Students' Experiences, Internal Life or Affect, and the School Curriculum

۱۲
تلیفیق رويكردی مناسب برای ورود علم و فناوری نانو به...

می توانند در سه گروه (۱) برنامه‌ریزان درسی، (۲) مجموعه‌ای مشخص از برنامه‌ریزان درسی و یادگیرندگان (مشارکتی)، و (۳) یادگیرنده‌ی یادگیرنده‌ای (بپنهایی) باشند.

1- در گروه اول که سازمان‌ندهی به‌طور مناسب درسی صورت می‌گیرد و مورد توافق جمع‌کننده‌ی از صاحب‌نظران این جمع‌یافته می‌باشد، دو رويكرد مشاهده می‌شود. در رويكرد اول، سازمان‌ندهی بر اساس موضوعات درسی بوده یعنی محور و اساس سازمان‌ندهی موضوعات درسی و یا رشت‌ها می‌باشند و در رويكرد دوم، سازمان‌ندهی بر اساس علائق و نیازهای یادگیرنده‌اند صورت می‌گیرد.

در سازمان‌ندهی بر اساس موضوعات درسی بسته به تعداد و مرز بین رشت‌ها رويكردهای زیر قابل تفکیک هستند.

• رويكرد تلفیق تکرشتهای، در این رويكرد اساساً می‌تواند تلفیقی صورت نگیرد و رشت‌ها بهصورت مجزا مورد توجه قرار گیرند و یا تلفیق موضوعات (مرتب) و مهارت‌ها (اشیانهایی) در درون یک رشت‌ها رخ دهد.

• رويكرد تلفیق رشت‌های مختلف که خود به رويكردهای چند رشت‌های، میان‌رشته‌ای، موازی، تصادفی، تکمیلی و جاسازی شده قابل تفسیر است. در رويكرد چند رشت‌های حداکثر رشت‌هایی که در فرآیند تلفیق فاصله‌ای هستند، ۳ رشت‌های می‌باشد، در حالیکه در میان‌رشته‌های که در گروه‌های به‌طور مدرسه‌ای درگیر این فرآیند خواهند بود، در رويكرد موازی موضوعات مشابه در رشت‌های مختلف در یک زمان معین و مشخص و به‌موازات یکدیگر مورد آموزش قرار می‌گیرند. در رويكرد جاسازی شده، یک رشت‌ها در درون یک رشت‌ها دیگر قرار گرفته است. در رويكرد تصادفی یک موضوع درسی

---

1. بهعنوان مثل در درس علوم زمین، معلم می‌تواند واحد زمین شناسی و واحد نجوم را با تأکید بی‌ثباتی کامل زمین به کم

مرتب سازد.

2. در این حالت ایجاد چندگانه‌ای از درس به‌وسیله معلم مورد توجه قرار می‌گیرد، بهعنوان مثل به هنگام آموزش سامانه‌گردن خون، معلم می‌تواند علاوه بر آموزش مفهوم سامانه و عناوین سامانه‌های گردش خون، ایجاد و تقویت مهارت‌های تفکر را نیز بهعنوان کیک دیگر از اهداف آموزش مورد توجه قرار دهد.
در ضمن یادگیری یک موضوع درسی خاص آموزشی می‌شود و بالاخره در مورد روانکرد ترکیبی در اثر ترکیب محتوا دو یا چند موضوع درسی یک موضوع جدید خلق می‌شود.

رویکرد تلفیق فرا رشته‌ای که در آن مرز بین رشته‌ها از طریق نویج به مضمون وابسته به زندگی واقعی به طور کامل از بین رفته است.

در سازمان‌دهی بر اساس نیازهای و علائم یادگیرنده، برنامه‌ریزی با کسب اطلاع از علائم و نیازهای یادگیرنده، به تلفیق مبادرت می‌نماید؛ که خود به دو دسته مدل روز تلفیق شده و گرا قابل تفسیر است که در حالت اول فعالیت‌های یادگیری از طریق علائق و پر‌ساخته‌ها دانش‌آموزان به جای محتوای توصیه شده توسط متخصصان فن طراحی می‌شود و در حالت دوم برنامه درسی مدرسه‌ای تمامی بر اساس تجارب، پیشینه، علائق و پر‌ساخته‌های دانش‌آموزان صورت می‌گیرد، به عبارتی تلفیق بین زندگی در خارج از مدرسه و در درون مدرسه‌ای دانش‌آموزان رخ می‌دهد.

در گروه دوم برنامه‌ریز درسی با مشارکت یادگیرنده اقدام به سازمان‌دهی برنامه‌ریزی درسی می‌نمایند که در آن علاوه بر در نظر گرفتن نیازهای و علائم یادگیرنده به هنگام سازمان‌دهی، همچنین به یادگیرنده نیز اجازه داده می‌شود که در اجرای فرآیند سازمان‌دهی محتوای مشارکت داشته باشد (دانش‌آموز محور). این نوع روانکرد در نقطه نظرات وارس (1991) به وضوح دیده می‌شود. در این گروه، برخی از تفسیر‌بندی‌های گروه اول عنی روانکردهای سازمان‌دهی بر اساس موضوعات درسی (مادن‌فرارشته‌ای، میان‌رشته‌ای، جاسازی شده، و آشیانه‌ای) و سازمان‌دهی بر اساس علائق و نیازهای یادگیرنده‌گذان، می‌تواند جای داشته باشد.

3- بالاخره در گروه دیگر، یادگیرنده‌ای یادگیرنده‌گذان بر اساس نیازهای خود، تلفیق را انجام می‌دهند. این نوع تلفیق می‌تواند توسط یک یادگیرنده و یا گروه بهم‌پوسته‌ای از یادگیرنده‌گذان (شبکه‌ای) صورت گیرد. این نوع روانکرد نیز در دیدگاه‌های هاپکینز (1937).
تلیف روبیکردهی مناسب برای ورود علم و فناوری نانو به...

تحت عنوان فرآیند طبیعی پادگیری و فوگارتی (۱۹۹۱ و ۲۰۰۹) تحت عنوان تلفیق در درون پادگیرنده و از میان پادگیرندگان؛ به وضوح بیان شده است.

شکل ۱، شماره خلاصه‌شده‌ای از جمع‌بندی روبیکردهی سازمان‌دهی برنامه درسی تلفیقی بر اساس فرد یا افراد سازمان‌دهنده برنامه را که توسط نگارنده‌ای این مقاله ارائه شده است، نشان می‌دهد.

انواع روبیکردهی تلفیق بر اساس فرد یا افراد سازمان‌دهنده و طراح برنامه درسی

شکل ۱- شماره تفسیرنامه‌ی روبیکردهی سازمان‌دهی برنامه درسی تلفیقی بر اساس فرد یا افراد سازمان‌دهنده برنامه

پیشنهاد پژوهش

پژوهش‌های انجام شده در حوزه آموزش علم و فناوری نانو در دوره‌ی قبل از دانشگاه و در خارج از ایران، به لحاظ تعدادی از فراوانی بالایی برخوردار بوده است. در این بخش فقط به تعداد

1. Normal learning process
2. Within and across learners
اندکی از آن‌ها که به طور مستقیم روند ساختاری سازماندهی محتوای علم و فناوری نانو را مخاطب قرار داده‌اند، بستگی به ریشه‌های ابتدا است.

در پژوهش راماکریشنا و همکاران (2010) از روند تعاملی بصری در آزمایش‌های از راه دور برای کار با میکروسکوپ روبیشی جستجو (SPM) استفاده شده است. هدف از این پژوهش تلفیق مفاهیم علم و فناوری نانو در برنامه‌های دوره‌ای متسوته در سال‌های بالای دیبرستان و سال‌های پایین کالج می‌باشد که در آن آزمایش‌های از راه دور محوطه‌های تعاملی مبتنی بر آموزش چندترشته‌ای که در آن‌ها از کشف مفاهیم اساسی، کاربردی و کلیدی فناوری نانو پیشپیلی می‌کند، بهره برد شده است.

گوس و همکاران (2013) در پژوهشی نشان دادند که با طراحی فعالیت‌های دستورالعمل تلفیقی شده در مباحث شیمی، شیمی فیزیک و شیمی تجزیه در دروه‌ای ابداعی، راهنمایی و متسوته از جمله فعالیت دستورالعملی AFM، می‌تواند به دانش‌آموزان کمک نماید که از نقشه سطوح پهن از دید، نقشه برداری کند و بتوانند روش کار دستگاه میکروسکوپ نیروی اتمی را درک نمایند.

در دو پژوهش اخیر، محتوای مورد تأکید برای تلفیق علم و فناوری نانو، آشنا شی‌ها، اصول و طرز کار سامانه‌های است که برای شناسایی نانو ساختارها و نانو مواد مورد استفاده قرار می‌گیرند.

در پژوهشی که توسط بلاندر و ساکینه (2012) صورت گرفته است مازول آموزش فناوری نانو مشتمل بر دو مفهوم اساسی، اندمازه و مقیاس و نسبت مساحت سطحی به حجم نهایی گردید. این مازول برای آموزش در پایه‌نامه تلفیق در درسهای برنامه‌ریزی گردید و در آن طیف‌گسترده‌ای از روش‌های آموزش به منظور افزایش درک دانش‌آموزان از مفاهیم مورد نظر استفاده شده است. در مصاحبه با دانش آموزان همگی اظهار داشتند که انجام فعالیت‌های فوق در آسان‌ترین مورد مفاهیم فناوری نانو به آن‌ها کمک نموده‌اند. محتوای مورد تلفیقی که در

1. Ramakrishna, Ong, Garcia, Pizziconi, Razdan and Glaunsinger
2. Goss, Brandt, and Lieberman
3. Atomic Force Microscopy (AFM)
4. Blonder & Sakhnini
تلقیف رويكردی مناسب برای ورود علم و فناوري نانو به…

این پژوهش مورد تأکید قرار گرفته است، مفهوم اندازه و مقیاس و مفاهیم پایه، همچون نسبت مساحت سطح به حجم در می باشد.

در ایران، تعداد پژوهش‌های مرتبط با علم و فناوری نانو در دوره‌ی پیش از اندکی از تنوع و تعدد چشمگیری برخوردار نبوده و این پژوهش‌ها بازداشت کننده‌ی آموزش مفاهیم خاصی از فناوری نانو متمرکز شده‌اند. در پژوهش‌های اندکی نیز رويكرد سازمان‌های محتوا آن‌ها و گونه‌ای سطحی و گذران مورد توجه قرار گرفته است. مهم‌ترین این پژوهش‌ها به شرح زیر می‌باشند.

پژوهشی که توسط پژوهشکده توسیعی دانشگاه شریف (1386) به سفارش سازمان پژوهش و برنامه‌ریزی آموزشی صورت گرفته است. در فصل اول این پژوهش، جایگاه فناوری نانو در کتب درسی مورد بررسی قرار گرفته است. در بحث روش شناسی جایگاه فناوری در کتب درسی، سه رويكرد معفی شده است. «رويكرد اول، مطالبی که ارتباط مستقیم با فناوری داشته باشند، به نحوی که مستقیماً به بیان مفاهیم و موضوعات فناوری پرداخته شود. رويكرد دوم، آن دسته از مطالب موجود در کتب درسی که ارتباط نزدیکی با مفاهیم و موضوعات فناوری داشته باشند. و رويكرد سوم، تعبیر دنبال نانو مبتنی بر یک کتب درسی که هدف از آن ترجمه‌ساده و قابل فهم باید آن‌طوری آموزشی یادگیری راهنمایی، قابلیت و شیمی دوره توسط پیش‌هادند شده است. بر اساس جداول ارائه شده، رويكرد اتخاذ شده توسط پژوهشگران این طرح، در دوره‌ی راهنمایی رويكرد تلقیفی جاسازی شده و در درو متوسطه رويكرد تلقیف چند رشته‌ی بوده است که در میان رشته‌های مورد تلقیف، زیست‌شناسی مورد توجه قرار گرفته است. از سویی دیگر در انتخاب نقاط و رعایت اصل دانش پایه مورد توجه قرار گرفته است. در این پژوهش، نقاط ورود حول دو محور اساسی مفاهیم و کاربرد فناوری نانو تظیم شده‌اند.

به‌سازواری (1387) روش‌هایی را برای آموزش فناوری نانو در ایران پیشنهاد نموده است که این روش‌ها بر اساس مطالعه تطبیقی آموزش فناوری نانو در ایالات متحده آمریکا، انگلستان، زاپورین، چین، آلمان و مطالب با روش‌های بی‌کارگرفته شده در ایران فهرست شده‌اند. وی در بخش از پژوهش خود بیان می‌دارد که «رويكردهای آموزشی فناوری نانو در مناطق پیش از
دانشگاه، رويكرد آموزش درهم تيده در ساير زمينه هاي علوم است. در اين پژوهش پژوهشگر تنها در بخشي از پژوهش خود به رويكرد در هم تيده اشكاره نموده است كه منظور رويكرد تلفيقی بوده است.

توضيح 1364 نيز در بخشي از پژوهش خود در خصوص آموزش علوم و فناوري نو در برنامه هاي رسمي و غير رسمي اين گونه بيشتر مي دارد كه با عنایت به مطالعات تطبقي، عملترک ساير كشورها و بررسی نکته نظارت متخصصان و كارشناسان آموزشی مي توان از سه روش عمده يعنی آموزش بين رشتاي، نيز غیر رسمی جهت آموزش مفاهيم مرتبط با علوم و فناوري نو استفاده كرد. وی در مورد حذف آموزش علوم و فناوري نو اين گونه بيان مي دارد كه مي توان در دوره آموزش عمومي و همدوره آموزش متوسطه و پيش دانشگاهي به آموزش مفاهيم مرتبط به علوم و فناوري نو پرداخت. موضوع اين پژوهش بهطور کلي علوم و فناوري نو بوده است و پژوهشگر بهطور روشان مشخص نسبت به است که چه رويكردي برآموزش علم و فناوري نانو و در چه دوره های تحصيلي بايد اتخاذ گردد.

و فقط به ارائه طييف از رويكرديها بدون ذكر رشتاي نو مورد تلفيق و پایه تحصيلي پرداخته است. در مجموع آنچه از جمع بيندي نتایج پژوهش هاي انجام شده در اين حوزه به دست مي آيد، بيفينگ اين مطلب است كه در هيه كدام از موارد ذكر شده، موضوع علم و فناوري نانو به عنوان یک رشت مستقل و مجزا مد نظر نبوده است، بلکه در تمام موارد رويكرد تلفيقی به عنوان رويكرد مناسب پيشنهاد شده است.

روش پژوهش

به طور كلي اين پژوهش از نقطه نظر هدف، در زمراه پژوهش هاي كاربردي قرار شواهد گرفته؛ زيرا نتایج حاصل به منظور تلفيق محتواي برنامه درسي علم و فناوري نانو در برنامه هاي درسي قابلتي كاربرد دارد. از بعد نوع پژوهش، در زمره پژوهش هاي توصيفي و تحليلي مي باشد؛ زيرا در اين پژوهش با مطالعه برنامه درسي علم و فناوري نانو در كشورهاي هدف رشتهها و نقاطی از محتواي رشتهها را كه محتوای علم و فناوري نانو در آنها ورود پيدا كرده است، مورد شناسايي قرار گرفته. همچنين سرفصل يعيان محتوایي كه در برنامه هاي درسي علم و فناوري

1. Integrated Education
تلفیق رويکردي مناسب برای ورود علم و فناوری نانو به...

نانو کشورهای هدف بیشتر مورد تأکید قرار گرفته و از اهمیت بالاتری برخوردار بوده مشخص گردیده و ارتباط محتوای علم و فناوری نانو در طول محتوای یک رشته و در عرض محتوای سایر رشته‌های درگیر نیز، مشخص گردیده و نتایج حاصله مورد تجزیه و تحلیل قرار گرفته، که با همک آنها، رويکردهای اعمال شده در سازمان‌دهی محتوای برنامه درسی علم و فناوری نانو

نتیجه‌گیری شده‌اند. در پایان نیز با توجه به شرایط و امکانات موجود در نظام آموزش قبل از دانشگاه کشور ایران، رويکردي مناسب برای تلفیق علم و فناوری نانو در برنامه‌های درسی ارائه گردیده است. سپس با در نظر داشتن ارتباط طولی و عرضی بین رشته‌های درگیر در فرآیند تلفیق، و مهیا بودن شروط لازم برای ورود محتوای علم و فناوری در محتوای رشته‌های انتخابی، نقاطی تحت عنوان نقاط ورود علم و فناوری پیشنهاد گردیدند.

در این پژوهش، جامعه آماری شامل کشورهای پیشرو در آموزش‌های مدرسه‌ای علم و فناوری نانو می‌باشد و حجم نمونه انتخابی، شامل کلیه استادان و مدارک قابل دسترس در حوزه برنامه‌های علم و فناوری نانو از کشورهای آمریکا، تایوان و استرالیا بوده است. در پخش تلفیق علم و فناوری نانو در محتوای برنامه‌های درسی نیز با توجه به نتایج به دست آمده از مطالعات برنامه‌های علم و فناوری نانو در کشورهای هدف و شرایط موجود، محتوای کتاب‌های درسی شیمی، فیزیک، زیست‌شناسی به دلیل فراهم آوردن دانش یافته علمی لازم

به منظور آموزش علم و فناوری نانو انتخاب شده‌اند.

سؤالات پژوهش

این پژوهش در صدد یافتن پاسخ‌هایی مناسب برای بررسی‌های زیر است که نهایتاً منتج به ارائه یک راهنما برای تلفیق علم و فناوری نانو در محتوای کتاب‌های درسی شیمی، فیزیک و زیست‌شناسی خواهد شد.

۱- در کشورهای پیشرو چه رويکردهایی برای سازمان‌دهی محتوای برنامه درسی علم و فناوری نانو در برنامه‌های درسی یک کاربردی شده است؟
۲- کدام رويکردهای سازمان‌دهی برای نظام آموزشی ایران مناسب‌تر است؟
فصلنامه مطالعات برنامه درسی، شماره 34، سال نهم، پاییز 1393

۳- محتوای برنامه درسی علم و فناوری نانو، بايد در برگیرنده چه سر فصل هایی باشد؟ و یادگیرنده برای درک محتوای تعمین شده، چه دانش پایه (پیش نیاز) علمی را باید از قبل فرا گرفته باشد؟

۴- با توجه به روشکرد اتخاذ شده، نقاط ورود محتوای علم و فناوری نانو در محتوای برنامه‌های درسی کدامند؟

یافته‌های پژوهش

بر اساس سوال‌های پژوهش، یافته‌های پژوهش بدين شرح است:

سؤال اول پژوهش: در كشورهاي پيشرفته چه رویکردهایي برای سازماندهي محتوای برنامه درسی علم و فناوری نانو در برنامه‌های درسی بكاربرده شده است؟

در پاسخ به اين سؤال، برنامه‌های درسی علم و فناوری نانو در ايالت‌هاي مختلف ایبالت متحده امريكا، كشور تایوان و استراليا پاس از برنامفس محدود تجزيه و تحليل قرار گرفته و رویکردهای بکار گرفته شده برای سازماندهي محتوای علم و فناوری از آنها استخراج گردیدند.

بر اساس بررسی‌هاي به عمل آمده در برنامه‌های درسی كشورهاي پيشرو در حوزه‌ی آموزش علم و فناوری نانو در دوره تحصیلی قبل از دانشگاه، مشخص گردید که ايالات متحده آمريكا و استراليا برنامه درسی به‌سراب منسجم و كاملي را برای علم و فناوری تهيه نمودهاند که در حال حاضر اين برنامه‌ها در مدارس متوسطه آنها اجرا مي‌گردد و جارچوب محتواي پيشنهادي نيز در پرازهاي زمانی لازم به‌روز رساني مي‌شود. اين برنامه‌ها از نظر اعتبار و كفایت به‌گونه‌ای مي‌باشند که از لحاظ برخى از كشورهاي پيشرفته در حوزه‌ي آموزش علم و فناوری نانو به‌عنوان مرجع قرار گرفته و از منابع آنان در آموزش علم و فناوری نانو استفاده مي‌گردد. كشور تایوان در آسيا نيز در رده‌اولين پيشگامان حوزه‌ي آموزش علم و فناوری در دوره آموزش قبلي از دانشگاه محسوب مي‌گردند و فعاليت‌های انجام شده اين كشور در زمينه برنامه درسی علم و فناوری نانو با به‌هميندی از نررهای متخصص در حوزه‌های علمي و تربیتی و علم و فناوری نانو در سطح ملی و جهانی صورت پذيرفته شده است و در حال حاضر در مدارس آن اجرا مي‌گردد (مهربان، 1391). همچنين در بررسی‌های به عمل آمده از كشورهاي هند، مشخص
تلیفیق رویکردهای مناسب برای ورود علم و فناوری نانو به...

گردید که آنها، در برنامه‌ریزی آموزش معلمان در حوزه علم و فناوری نانو (که جزء لاینفکی از رویکردهای تلفیقی علم و فناوری نانو در برنامه‌های درسی محسوب می‌گردد) نیز پیشگام بوده و در این زمینه اقدامات منسجم، گسترده و پیوسته‌ای را انجام داده و می‌دهند (مهریان، ۱۳۹۲).

ایالات متحده آمریکا

در برنامه‌های علمی و فناوری نانو ارائه شده توسط نانو سنس، ببیند مضمون انتخاب‌گرایی که این مضمون‌ها علاوه بر بیان برخی از اصول و مفاهیم پایه علم و فناوری نانو در زندگی روزانه برای دانش‌آموزان نیز آشنا بوده، از جمله: اندوزه مواد و اجسام، ضد‌افتاهاي شفا، انرژی پایه و صاف‌های کوچک و سپس این مضمون‌ها در حوزه‌های محتوایی شیمی، فیزیک، زیست‌شناسی و مهیت‌زیست مورد بررسی قرار گرفته‌د. به این صورت که مضمون‌ها در بخشی از محترفان برنامه‌های درسی فوق که با آن مرتبط بوده تلفیق گردیده‌اند. این نوع رویکرد تلفیق، در حقیقت نزدیک به سهل تلفیق چند رشته‌ای دریک (۱۹۹۳ و ۲۰۰۴) می‌باشد. در این تلفیق مرزبندی بین رشته‌ها کامل آشکار است. لازم به ذکر است که این برنامه به صورت آزمایشی در برخی از مدارس آمریکا اجرا شده است. در برنامه دیگری تحت عنوان برنامه دارسی دیرسترانت علم نانو، رویکرد مشابهی با رویکرد اخذ شده از سوی برنامه نانو سنس به تلفیق چند رشته‌ای مشاهده می‌شود و هدف از تلفیق، معرفی زمینه‌های جدیدی از علم نانو به دانش‌آموزان و تهیه آن برای یادگیری علم پیان شده است. در برنامه دارسی ارائه شده توسط شبکه ملی زیر ساخت نیز پذیرشی از علم و فناوری نانو و کاربردهای فناوری نانو انتخاب شده‌اند و سپس آن مضمون‌ها در حوزه‌های محتوایی شیمی، زیست‌شناسی، مهیت‌زیست، تربیت بنی، علوم، علوم اجتماعی، ابزار و فناوری و فیزیک در سطوح ابتدایی، راهنمایی و متوسطه تلفیق شده‌اند. رویکرد تلفیق بکار گرفته، رویکرد میان‌رشته‌ای مشابه با نگرش جیکرز (۱۹۸۹) اتخاذ شده است. برنامه دارسی علم و فناوری نانو ارائه شده توسط گروه آموزش بین‌رشته‌ای دانشگاه ویسکانسین، با رویکرد چند رشته‌ای تنظیم شده است. در این برنامه از طریق مضمون علم و فناوری نانو که در اینجا خود یک رشته دارسی می‌باشد بین برنامه‌های دارسی شیمی،

2. High School Nanoscience Program

٩١
فیزیک و زیستشناسی ارتباط و اتحاد، ایجاد شده است. در عین حال که بر این موضوع تأکید شده است که برای آموزش علم و فناوری نانو، باید گروه برای باید واحدها واحدها (پیشینهای علمی و مهارتی لازم باشند. برنامه اینه شده توسط نانوزن‌ها توسط روابط و تلفیقی مشابه با برنامه‌ی دانشگاه ویسکانسین (جند رشتکه‌ی) را برای ارائه محتوای علم و فناوری نانو در برنامه‌های درسی طراحی نموده است.

تاپوان

کشور تایوان یکی از فعال‌ترین کشورهای آسیایی در حوزه آموزش علم و فناوری نانو در دوره‌های قبل از دانشگاه می‌باشد. در برنامه‌ی درسی علم و فناوری نانو ارائه شده این کشور سه جلد کتاب درسی برای سال‌های اول متوسطه با عنوان هم‌نامی فناوری نانو با شیمی، فیزیک و زیستشناسی تهیه شده است که شامل مفاهیم اصلی فناوری نانو، از جمله نانو ابعاد، نانو مواد، نانو کاتالیزیر و... می‌باشد. بنابراین رویکرد بکارگرفته شده در تنظیم محتوای علم و فناوری نانو در محتوای کتاب‌های درسی مذکور چند رشتکه‌ای می‌باشد. همچنین کتابی تحت عنوان گنجینه فناوری نانو که توسط معلمان و استادی دانشگاه نوشته شده است، به عنوان کتاب درسی برای دانش‌آموزان ابتدایی، راهنمایی و دبیرستان تهیه شده است. به عبارت دیگر، در برنامه‌ی درسی مدارس تایوان نه تنها علم و فناوری نانو در محتوای کتاب‌های درسی علوم با به تلفیق شده است، بلکه خود نیز به عنوان موضوعی جداگانه نیز مدنظر قرار گرفته است. همچنین در یکی از درس‌های کتاب ادبیات مقطع متوسطه نیز درسی برگرفته شده از پروشورترین رمان افسانه‌ای معروف مایکل کریکتون ۱ تحت عنوان طرفین تدوین شده است که پیش‌تر می‌بافت اخلاف در فناوری نانو را می‌دانند. این موضوع به علت آمده در کشور تایوان می‌توان این گونه بیان نمود که فناوری نانو علاوه بر اینکه به عنوان موضوع جداگانه ارائه شده است (تکرر رشتکه‌ی)، بلکه به صورت چند رشتکه‌ای نیز در محتوای کتاب‌های علوم با یک جدیدی از مدل‌های ده‌های دنیای فون‌گارتی (۱۹۹۱)

۱. Nanozone
3. Michael Crichton
4. Prey
تللیق رویکردهای مناسب برای ورود علم و فناوری نانو به...

همچنین عبارت رویکرد چند رشته‌ای سازمان‌دهی محتوای علم و فناوری در کتاب‌های درسی مدارس به صورت مستقیم در گزارش‌های ارائه شده از کشور تایوان توسط (فدر و ازنار، ۲۰۱۱) نیز بکار برده شده است.

استرالیا

برنامه اکسیس نانو ۲ که پس از مدتها به یک این یو۳ تغییر نام داد یکی از برنامه‌هایی است که درصدند آوردن فناوری‌های نوپدید از جمله فناوری نانو به برنامه‌های درسی بوده است. این برنامه توسط دولت استرالیا بخش صنعت، نوآوری، تغییرات آپ و هوا، علوم تحت تحقیقات و آموزش عالی حمایت می‌گردد و مستند طراحی و اجرای آن بر عهده‌ی دانشگاه ملبورن می‌باشد. در این برنامه فناوری‌های نوپدیدی شامل: فناوری نانو، نانو- زیست فناوری و زیست فناوری برای ورود به برنامه‌های درسی مورد تأکید قرار گرفته‌اند. مفاهیم این سه فناوری در حوزه‌های محتوای علم مبتنی، شیمی، زمین و فضا و فیزیک در حال تکامل می‌باشند. در این برنامه اعمال شده است از نظر عملکرد با برنامه میان‌رستانشتهای مشابه است با این تفاوت که در اینجا مضمون مشترک مورد بحث در حوزه‌های محتوای دیگر، خود یک حوزه محتوایی جدید است. سرفصل‌های مورد بحث در این برنامه شامل انداده‌گیری و مقیاس، نانو ساختارها، کاربرد فناوری نانو و شناسایی نانو ساختارها می‌باشد. لازم به ذکر است در کلیه برنامه‌های ارائه شده در مطالعات کشورهای هدف، رعایت استانداردهای آموزش محتوا و سواد فناوری در تنظیم محتوای علم و فناوری نانو مدنظر قرار گرفته‌اند.

در مجموع آنچه در خصوص رویکردهای اتخاذ شده در قبال سازمان‌دهی محتوای علم و فناوری نانو در کشورهای هدف به دست می‌آید، بیانگر این مطلب است که اول‌اً، رویکرد حاکم رویکردهای تلفیقی بوده است و ثانی‌اً بسته به تعداد رشته‌های که تلفیق علم و فناوری نانو در آنها صورت گرفته است، نوع رویکرد چند رشته‌ای و پیش‌رشته‌ای بیشتر مورد تأکید قرار گرفته‌اند.

1. Feather & Aznar
2. Access Nano
4. Emerging Technology
5. University of Melbourne with the support of NETS-PACE
ناتیج حاصله در توافق با نتایج حاصل از پژوهش‌های انجام شده در این حوزه که تعدادی از آنها در بخش پیشنهاب پژوهش آورده شده‌اند، می‌باشد.

سوال دوم پژوهش: کدام روبکرد برای نظام آموزشی ایران مناسب‌تر است؟

در پاسخ به این سؤال لازم است به این مسئله تاکید شود که با توجه به نکتر و تعداد حوزه‌های مختصاتی در برنامه‌های درسی ایران و نبود معلمان و دیبران متخصص و تربیت‌یافته در حوزه‌ای آموزش علم و فناوری نانو، بطور مسلم بهترین روبکرد برای ارائه برنامه درسی علم و فناوری نانو روبکرد تلفیقی می‌باشد، منوط به اینکه آموزش‌های علم و فناوری نانو به معلمان در بالای دوره‌های آموزشی ضمن خدمات ارائه گردند. با استحراز روبکردهای اعمال شده در سازمان‌دهی محیط‌های علم و فناوری نانو در کشورهای هدف و برقرار بودن ارتباط و تأثیر مقابل حوزه علم و فناوری نانو با اکثر رشته‌ها، لذا به طور قطع و یقین، روبکرد تلفیق بین رشته‌ای روبکرد مطلوب و مناسب خواهد بود. اما از آنجایی که بکار بستن چنین روبکردها مستلزم داشتن حداقل سواد و آشنایی با علم و فناوری نانو و آگاهی از تأثیرات مقابل علم و فناوری نانو بر تکامل مؤلفه‌های علمی، فناوری، اجتماعی و اقتصادی از سوی مؤلفان کتاب‌های درسی و معلمان و دیبران است که فرآیندی زمین‌بری می‌باشد و نمی‌توان نیز برنامه‌ای مدون از سوی وزارت آموزش و پرورش برای آموزش این مخاطبان در حوزه علم و فناوری نانو اتخاذ نگردد، است، بنابراین با توجه به وضعیت موجود، مناسب‌ترین روبکرد، روبکرد تلفیق چند رشته‌ای می‌باشد که در آن محیط‌های علم و فناوری در محیط‌های برنامه‌های درسی شیمی، فیزیک و زیست‌شناسی یا حفظ ارتباط‌های عرضی (پیش رشته‌ها) و طولی (توالی مباحث در یک رشته در دوره‌های تحصیلی) تلفیق گردد. تلفیق محیط‌های علم و فناوری نانو در رشته‌های شیمی، فیزیک و زیست‌شناسی (چندشاخه‌ای) به همراه ارتباط طولی و عرضی میان رشته‌های مورد نظر، در شکل-2 نشان داده است که با بهرهمندی از اطلاعات حاصل از برنامه درسی علم و فناوری نانو در کشورهای هدف، توسط نگارنده مقاله طراحي و پیشنهاد گردیده است و در مجموع بیانگر این نکته است که روبکرد انتخابی در این پژوهش با مطالعات تطبیقی و بررسی‌های به عمل آمده در تعدادی از پژوهش‌ها سازگار می‌باشد.

1. لازم به ذکر است که مباحث علم و فناوری نانو مرتبه با محیط زیست در دو حوزه‌های شیمی و زیست‌شناسی قابل تلفیق می‌باشد.

۲۴
تلفیق رویکردی مناسب برای ورود علم و فناوری نانو به...

![شکل ۲- تلفیق علم و فناوری نانو در رشته‌های شیمی، فیزیک و زیست‌شناسی (ارتباط طولی و عرضی)](image)

در حقیقت با تلفیق علم و فناوری نانو در حوزه‌های فوق الکترک، نه تنها موضوع جدیدی از علم و فناوری بدون ایجاد تکثر موضوعی در برنامه‌های درسی وارد می‌گردد، بلکه موجب می‌گردد که دانش آموزان انسجام و ارتباط معناداری بین محتوای دروس شیمی، فیزیک و زیست‌شناسی را نیز برقرار نمایند و آموزشهای علمی شان را در این سه حوزه که اکنون سنتگ بنای سازه‌ی جدیدی از علم و فناوری واقع گردیده است، تثبیت نمایند.

سؤال سوم پژوهش: محتوای برنامه درسی علم و فناوری نانو، با بیداری برگیرنده‌ی صاحب سرفصل‌هایی باشد؟ و یا درباره‌ی برای درک محتوایی تعیین شده، چه دانش‌پایه‌ای (پیش‌نیاز) علمی را باید از قبل فرا گرفته باشد؟

در پاسخ به این پرسش، نیاز به اساس نتایج تحلیل شده از مطالعه بخش محتوایی برنامه درسی علم و فناوری نانو کشورهای هند و همچنین بررسی پژوهش‌های انجام شده در این حوزه، سرفصل‌هایی که بیشتر مورد تأکید قرار گرفته مشخص گردیدند که بر این اساس سه سرفصل کلی زیر برای تلفیق محتوای علم و فناوری نانو پیشنهاد گردیدند:

الف) اندیشه و مقياس نانو

این سرفصل از آن نظر بسیار مهم است که ایجاد تلفیق روشن و واضح از تشخیص مقياس نانو در متن به همراه کارآمدی علمی، به دانش آموزان کمک می‌کند تا ارتباط علم و فناوری نانو را با سایر علومی که در حال حاضر در حال پیشرفت آنها هستند، بهتر درک کند.

ب) مبانی و مفاهیم علم و فناوری نانو

۲۵
این سرفصل خود شامل معرفی فناوری و فناوری نانو، پریکت از نانو ساختارها و نانو مواد و روش‌های شناسایی و تشخیص آنها، اخلاق در فناوری، فناوری و جامعه (تاثیرات فناوری بر جامعه از قبل تاثیرات مثبت و منفی فناوری نانو بر مهیت زیست).

(ج) کاربرد فناوری نانو، سامانه‌های مبتنی بر نانو، نانو ساختارها و نانو مواد و محصولات فناوری نانو. این سرفصل پرداختن به‌خور محتراء علم و فناوری نانو می‌باشد.

در ارزیابی‌هایی به عمل آمده‌پس از اجرای آزمایشی برنامه نانو سنس در آمریکا مشخص گردد که اگرچه برنامه‌های مرتبط با کاربردهای فناوری نانو با استقبال بالایی از سوی دانش آموزان مواجه گردید، اما فهم سبب‌گری از مفاهیم مرتبط با نانو برای دانش آموزان مشکل بوده و این مفاهیم اغلب با بایستی بر روی مفاهیم پایه علمی بنای صندلی که در حال حاضر هنوز به دانش آموز، آموزش داده نشده‌اند. لذا آموزش‌های قبلی و یا مورور بلافاصله مفاهیم پایه علمی بسر آموزش موضوعات مرتبط با نانو به لحاظ زمانی تقدیم نمی‌گردد.

بتاراین پس از تعیین زیر فصل‌های تشکیل دهنده‌هی سرفصل، دانش‌پایه علمی در جوهرهای شیمی، فیزیک، زیست‌شناسی و همچنین ریاضی برای فراگیری هر موضوع تعیین گردیدند. بدبی‌ای است در سرفصل‌های بند ب، و چ علاوه بر رعایت فراگیری دانش‌پایه علمی متناسب (از قبل یا همزمان)، درک مفهومان اندازه و مقياس‌تان نانو از سوی دانش‌آموزان نیز یک پیش‌نیاز‌های علمی مهم و پایه محضوب می‌گردد (شکل ۳).

شکل ۳- پیش‌نیاز‌های لازم برای درک مفاهیم علم و فناوری نانو

سوال: چهارم پژوهش: با توجه به روند انتخاب شده در سازمان‌دهی محتوای علم و فناوری نانو، نقاط ورود محتوای علم و فناوری نانو در محیط دروس شیمی، فیزیک و زیست‌شناسی کدامند؟

۲۶
تلفیق رویکردهای مناسب برای ورود علم و فناوری نانو به...

با بررسی برنامه‌های درسی تلفیقی علم و فناوری نانو در کشورهای هدف نکاتی به شرح زیر برای تعیین نقاط ورود محتوای علم و فناوری، ب чет ترتیب الیوت مشخص گردیدند:

- درک مفهوم مقياس نانو در الیوت قرار دارد. این قبیل از ورود محتوای مربوط به مبانی و مفاهیم علم و فناوری نانو، و کاربرد فناوری نانو با مفهوم مقياس و مقياس نانو از قبل فراگرفته شده باشد و یا نقطه مناسبی برای ورود این مبحث قبل از ارائه سایر مباحث وجود داشته باشد.

- نقطه ورود سرفصل های محتوایی در بندگاه ب و ج در بخش هایی از محتوای فعالی کتابهای درسی تعیین می‌گردد که ارتباط مفهومی بین محتوای موجود با مفاهیم علم و فناوری نانو موجود بوده باشد.

- ورود محتوای علم و فناوری نانو در نقاطی پیشنهاد می‌گردد که رده پایه علمی مورد نیاز قبل توسط دانش آموز فراگرفته شده باشد و یا در حال فراگیری آن باشد (تکمیل در طول یک رشته و یا عرض رشته‌ها).

بر این اساس، نقاط ورود برای تلفیق محتوای علم و فناوری نانو بر اساس سرفصل‌های تعیین شده در محترای کتابهای شیمی، فیزیک و زیست‌شناسی دوره متوسطه و پیش دانشگاهی (با رعایت دو اصل، وجود پیش‌نیازهای علمی پایه و برقراری ارتباطات طولی (در یک رشته) و عرضی (میان سه رشته) میان مفاهیم) پیشنهاد گردیدند (مهربان، ۱۳۹۱). به دلیل تخصصی بودن محتوای موارد پیشنهادی ته نبا ذکر تعداد نقاط ورود در هر سرفصل، در جدول ۱ خلاصه شده‌اند.
جدول 1- تعداد نقاط ورد برای تلفیق محتوای تعمیم شده علم و فناوری در محتوای کتاب‌های درسی شیمی، فیزیک و زیست‌شناسی.

<table>
<thead>
<tr>
<th>شیمی و آزمایشگاه</th>
<th>اندازه و مقياس نانو کاربرد فناوری نانو مبانی و مفاهیم علم و فناوری نانو</th>
<th>17</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sala Awtel</td>
<td>Sala Dowm</td>
<td>Sala Sowm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فیزیک و آزمایشگاه</th>
<th>اندازه و مقياس نانو کاربرد فناوری نانو مبانی و مفاهیم علم و فناوری نانو</th>
<th>13</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sala Awtel</td>
<td>Sala Dowm</td>
<td>Sala Sowm</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ریاضی 3</td>
<td>تجربی 2</td>
<td>ریاضی 6</td>
</tr>
<tr>
<td></td>
<td>پیش دانشگاهی</td>
<td>تجربی 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>علوم بهداشت، زیست شناسی و آزمایشگاه</th>
<th>اندازه و مقياس نانو کاربرد فناوری نانو مبانی و مفاهیم علم و فناوری نانو</th>
<th>12</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sala Awtel</td>
<td>Sala Dowm</td>
<td>Sala Sowm</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری
آموزش علم و فناوری نانو نه تنها باعث می‌گردد دریچه‌ای جدید از علم و فناوری نوظهوری بر روی دانش آموزان گشوده گردد، بلکه موجب می‌گردد که به‌واسطه آشنایی با آن، درک و فهم
تلقیف روبورکردی مناسب برای ورود علم و فناوری نانو به...

دانش آموزان از علوم نیز تقویت گردید. با توجه به مطالبات استناد بالادستی در بخش های علمی و فناوری و توجه به موقعیت و رتبه فلکی کشور ایران در حوزه فناوری نانو، نقش آموزش و پرورش به عنوان اولین نهاد رسمی آموزش های علمی و فناوری و در نتیجه ضرورت توجه به علم و فناوری نانو در آموزش های قبل از دانشگاه اشکار می گردد. یکی از مسئلیت که برای مواجه با ورود علم و فناوری نانو در برنامه های درسی دانش آموزان بايد مورد توجه قرار گیرد، یافتن روبورکردی مناسب برای ورود علم و فناوری نانو به محتوای برنامه های درسی است. در پژوهش حاضر با توجه به بررسی فعالیت های انگج شده در کشورهای پیشرو و همچنین مطالعه پژوهش های انجام شده در این حوزه، مشخص گردید که روبورکرد غالب برای سازمان های تحتوای علم و فناوری نانو روبورکرد تلقیفی بوده است. نتایج حاصل از مطالعات فوق بیانگر این مطلب هستند که روبورکرد تلقیفی اعمال شده برای سازمان های تحتوای علم و فناوری نانو، در محدوده روبورکرهای ضمنی تلقیفی (2-1) رشته درگیر در فرا ایند تلقیفی) و با میزان رشته های تمامی یا قسمت اعماش رشته های درگیر در فرا ایند تلقیفی (در نوسان بوده است. از انجایی که علم و فناوری نانو به لحاظ ماهیت و تأثیرات همه جانبه بر تمامی شرایط شناخت زندگی بشر، ماهیتی بین رشته های دارد، لذا تحتوای علم و فناوری نانو قابلیت تلقیف در کلیت برنامه های درسی را دارد. ولی به لحاظ مهم ترین چالش پیشرو نظام آموزشی کشور ایران، بیشتر نیروی انسانی متخصص و آشنا با علم و فناوری نانو (دبیران و برنامه نیروی دیپلماتیک) در تمامی حوزه ها و رشته ها، روبورکرد تلقیفی چند رشته ی از رشته های شیمی، فیزیک و زیست شناسی که دیپلم آنها طی برنامه های ترویجی اجرا شده توسط سازمان توسعه فناوری نانو در کشور، آشنا با علم و فناوری نانو را بیان نموده اند (مردمان، 1392) به عنوان مناسب ترین راهکار پیشنهاد می گردد. به منظور اعمال روبورکرد تلقیفی چند رشته ای گام بعدی تعیین سرفصل های تحتوای علم و فناوری، می باشد. با توجه به مطالعه برنامه درسی کشورهای هدف مشخص گردید، مبحث اندازه و مقياس یکی از مهم ترین و اساسی ترین مباحث برای ورود به علم و فناوری می باشد. به‌طور کلی، با بخش اندازه و مقياس مشخص یکی از مهم ترین و اساسی ترین مباحث برای ورود به علم و فناوری آموزش علم و فناوری نانو مخصوصاً در دوره های تحصیلی ابتدایی و راهنمايی به این مهم اختصاص داده شده است و دليل آن این است که تا زمانی که دانشآموز درک مناسبی از اندازه

1. National Nanotechnology Infrastructure Network

29
و مقیاس، و مقیاس اندازه‌های نداشته باشد، قادر به درک مقیاس نانومتری که موضوع اصلی علم و فناوری نانو می‌باشد، خواهد بود. مباحثی که از درجه اهمیت بعید برخورد می‌باشند شامل، معرفی نانو ساختارها، تهیه و شناسایی نانوساختارها، نانوموداری و نانوسامانها، مباحث اخلاقی و اجتماعی مرتب با این فناوری و مخصوصاً کاربرد فناوری نانو در موارد مختلف می‌باشد. نتایج حاصل از پژوهش‌های انجام شده در مورد آموزش مباحث علم و فناوری نانو نشان داده است که طرح مباحث کاربرد فناوری نانو در زندگی روزمره یکی از سرفصل‌هایی است که برای دانش‌آموزان از جذابیت بسیار بالایی برخوردار بوده است. 1. مسائل اجتماعی و اخلاقی در فناوری نانو یکی از مباحثی می‌باشد که در محتوای برنامه درسی علم و فناوری نانو در برخی از کشورهای هدف مورد توجه قرار گرفته‌اند. در این پژوهش سرفصل‌های محتوایی، در سه محور کلی اندمازه و مقیاس، مبانی و مفاهیم علم و فناوری نانو و کاربردهای فناوری نانو خلاصه گردیدند. از آنجایی که تحقیق شیوه‌ای است که در آن بخش‌های وابسته به هم در یک کل بزرگتر مرتبط می‌شوند و یا یک رابطه متوازن با یکدیگر برقرار می‌کند (مهم‌محمدی،1377)، در نتیجه وجود ارتباط رکن اصلی در فرآیند تلقیف محسوب می‌گردد. بنابراین به منظور برقراری این ارتباط، با این مفاهیم محتوای ورود یافته و محتوای موجود در نمونه کتاب‌های درسی ارتباط موجود باشد. در این پژوهش از برقراری این ارتباط، تحت عنوان نقطه ورود پایان سده است. این ارتباط هنگامی معنادار خواهد بود که دانش و مهارت لازم برای فراگیری هر کدام از مباحث و موضوعات قبل از آموزش محتوا، فرا گرفته شده باشد. با در نظر داشتن موارد ذکر شده در بالا، نقطه قابل توجهی برای ورود مباحث علم و فناوری نانو در محتوای کتاب‌های درس‌ی شیمی، فیزیک و زیست‌شناسی دوره متوسطه تحقیصی و پیش‌دانشگاهی تعیین شدند. نقطه ورود مبحث اندازه و مقیاس به دلیل زیر بنیاد بودن در کتاب‌های درسی شیمی، فیزیک و زیست‌شناسی پایه اول متوسطه، قبل از ورود به سایر مباحث تعیین گردیدند برای این مبحث در کتاب شیمی و فیزیک پایه اول متوسطه هر کدوم، 1 نقطه ورود و در کتاب علوم بهداشت یکی پایه اول متوسطه، 2 نقطه ورود شناسایی شدند. در محتوای کتاب‌های شیمی پایه اول متوسطه، تا پیش دانشگاهی، 65 نقطه برای ورود سرفصل مربوط به مبانی و مفاهیم علم و فناوری نانو و

1. Nanosense
2. Nanozone

تایوان و
تلفیق ریکتری مناسب برای ورود علم و فناوری نانو به...

نقطه نیز برای ورود کاربردهای فناوری نانو تعیین گرددند که بخشی از نقاط ورود تعمیم شده در سرفصل کارد فناوری نانو، به مباحث زیست محیطی اختصاص دارد. در محتوای کتاب‌های فیزیک پایه اول متوسطه تا پیش دانشگاهی ۲۰ نقطه برای ورود مبانی و مفاهیم علم و فناوری نانو و ۲۴ نقطه برای ورود کاربردهای فناوری نانو شناسایی شدند. در محتوای کتاب‌های علوم بهداشت و زیست شناسی پایه دوم تا پیش دانشگاهی نیز ۲۵ نقطه برای ورود مبانی و مفاهیم علم و فناوری نانو و ۲۸ نقطه برای ورود کاربردهای فناوری نانو مشخص شدند. نتایج حاصله بینانگی این هستند که محتوای کتاب‌های درسی شیمی پایه اول متوسطه تا پیش دانشگاهی، نقاط مناسبی را برای ورود سرفصل مبانی و مفاهیم علم و فناوری در بردنشتادن و نشان دهنده نواحی بسیار بالای محتوای کتاب‌های شیمی برای طرح این مبحث از علم و فناوری نانو بوده است. همچنین محتوای کتاب‌های درسی زیست شناسی نیز نقاط بسیار مناسبی را برای ورود سرفصل کاربردهای فناوری نانو در بردنشتادن، زیرا شاخص‌های علوم زیستی از حوزه‌های هستند که جدیداً در آنها از فناوری نانو بستار استفاده می‌شود. در مجموع این گونه می‌توان نتیجه‌گیری نمود که از طریق ریکترد تلفیق چند رشته‌ای امکان ورود مباحث اصلی و کلیدی علم و فناوری نانو در محتوای کتاب‌های درسی علوم پایه شامل شیمی، فیزیک و زیست شناسی به خوبی امکان پذیر بوده و از این طریق بدون ایجاد موضوعی جنگا در مجموعه متراکم رشته‌ها و موضوعات درسی، فرصت مناسبی برای معرفی علم و فناوری نانو به دانش آموزان به‌خوبی می‌سر خواهد شد.

منابع

امحمدی، پروین (۱۳۹۰) طراحی و سازمان‌دهی محتوای برنامه درسی ریکترد بین رشته‌ای در برنامه درسی تلفیقی، چپ اول، تهران، آیاز.

بدریان، عابد (۱۳۸۶) تعیین ضرورت‌ها، اهداف و بررسی حدود و شیوه‌های آموزش فناوری‌های نانو در برنامه درسی مدارس، موسسه پژوهشی برنامه‌ریزی درسی و نوآوری‌های آموزشی پژوهشکده توسط تکنولوژی (۱۳۸۶)، مطالعات اولیه ایجاد موزه علوم نانو مهندسی، فصل اول جایگاه فناوری نانو در کتاب درسی، دانشگاه شریف، ویرایش سوم.
برنامه درسي ميل جمهوري اسلامي ايران (1391) شوراي عالي آموزش و پرورش.

سند تحول بينادين آموزش و پرورش (1390) شوراي عالي انقلاب فرهنگي، وزارت آموزش و پرورش، شوراي عالي آموزش و پرورش.

سند چشم انداز بيست ساله جمهوري اسلامي ايران (1384) مجلس شورای اسلامي.

سند نقشه جامع علمي كشور (1389) شوراي عالي انقلاب فرهنگي.

شهسواري خداياري، ابرج (1387) مطالعه تطبيقی روش های آموزش فناوری نانو در ايران و كشورهای پیشرو و ارائه مبانی تربیت روشن آموزش در ايران، پایان نامه کارشناسي ارشد.

دانشگاه علامه طباطبایي، دانشکده روانشناسي و علوم تربيتی.

علم الهدي، جميله (1384) مبانی نظری تفليق برنامه درسي بر اساس حکمت متعاليه

صدرا مطاليهن، مجله علوم اجتماعي و انساني دانشگاه شیراز، شماره 3، صص. 15-1.

مهرهان، زهر (1391) راهنمای و رود مفاهيم علم و فناوری نانو در محلون كتاب های دريسی

شييمي، فيزيك و زبست شناسی دوره متوسطه تحصيلي، پژوهشگاه مطالعات آموزش و پرورش.

مهرهان، زهر (1392) بررسی روش های آموزش فناوری نانو به دبيران علمو پابه و چگونگی

ارزيابي پيشرفت آنها، پژوهشگاه مطالعات آموزش و پرورش.

مهمحمدي، محمود (1378) تفليق در برنامه درسي، تاريخچيهه، ضرورت، معيارها و اشكال

مجله پژوهش در مسائل تعليم و تربيت، صص. 47-15.

مهممهدی، محمود، حامدي، پروین (1380) برنامه‌های درسی تفليقي، رویکري متفاوت با برنامه‌های درسي موضوع محوري/دیسبليبینی (شيهو سنتی)، مجله علوم انسانی دانشگاه

الزهره (س)، صص. 199-218.


Drake, S. (1993), planning for Integrated Curriculum, the Call to Adventure, Virginia: Alexandra, ASCD.


National Science Education Standards, (1996) National Committee on Science Education Standards and Assessment, National Research Council, Washington, DC. the National Academies advisers to the Nation on science, and medicine.


