عوامل مؤثر و روابط بین آن‌ها در ارتقای استفاده از فناوری‌های دیجیتال در میان معلمان دوره دوم ابتدایی و دبیران ریاضی دوره اول متوسطه

نوع مقاله: مقاله پژوهشی

نویسنده

کارشناس پژوهشی پژوهشکده برنامه ریزی درسی و مطالعات نوآوری آموزشی

چکیده

تلفیق فناوری‌های دیجیتال در فرآیند یاددهی و یادگیری یک پدیده جهانی است که عمدتاً به‌وسیله دولت‌ها، در دانشگاه‌ها، دانشکده‌های علوم تربیتی و مدارس با هدف بهبود سیستم آموزشی توصیه می‌شوند. هرچند علی‌رغم قابلیت‌های متعدد این فناوری‌ها، استفاده از آن‌ها در کلاس‌های درس، جدید و بیشتر محدود به پایه‌های ابتدایی است. این مطالعه با رویکرد آمیخته سلسله مراتبی اکتشافی، به استخراج عوامل مؤثر در ارتقای استفاده از فناوری‌های دیجیتال از طریق مصاحبه‌های نیمه‌ساختاریافته با شرکت شش گروه سه تا پنج‌نفری پرداخته و با اجرای پیمایش با شرکت 457 نفر از معلمان دوره دوم ابتدایی و دبیران ریاضی اول متوسطه به‌وسیله تحلیل مسیر با استفاده از مدل‌سازی معادله ساختاری، روابط بین عوامل را آزمون و پیشنهاد‌هایی برای ارتقای استفاده از آن‌ها ارائه‌کرده است. نتیجه اصلی این پژوهش این است که آمادگی معلم در استفاده فناوری‌های دیجیتال متأثر از آمادگی مدرسه است که روی استفاده دانش‌آموزان از فناوری‌های دیجیتال اثر مثبت و معناداری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Influencing Factors and Relationships between them to enhance the Usage of Digital Technologies by Primary and Mathematics Teachers

نویسنده [English]

  • Fereshteh Zeynivandnezhad
Research officer in Research Institute
چکیده [English]

Integrating digital technologies in teaching and learning processes is a universal phenomenon which is often recommended by governments, universities, education faculties and schools in order to improve educational systems.  In spite of the capabilities of digital tools, their usage is new in classrooms and restricted to primary grades. Therefore, the present study with an exploratory sequential mixed method approach in two steps was conducted to extract influential factors that enhance the use of digital technologies. To do so, semi-structured interviews were conducted with 6 groups of from 3 to 5 primary and mathematics high school teachers, respectively. In addition, influencing factors were extracted, through the quantitative approach, survey method participating 457 people using path analysis, and the relationships amongst factors were examined and several recommendations were proposed. The main findings showed that school readiness contributed to teacher readiness and these two had statistical signification effect on student’s use of digital technologies.

کلیدواژه‌ها [English]

  • digital technologies
  • upper primary school
  • primary teachers
  • mathematics teachers in lower secondary school
حسینی، زهرا. (1394). مقایسه تأثیر الگوهای آموزش مستقیم و ساختارگرایی بر افزایش دانش تلفیق فناوری دانشجو معلمان.رویکردهای نوین آموزشی دانشکده علوم تربیتی و روانشناسی، 10(2)، 14-24.
خروشی، پوران؛ نصر اصفهانی، احمد رضا و میرشاه جعفری، ابراهیم. (1397). مدل مفهومی ارزشیابی از شایستگی‌های مورد انتظار از دانشجومعلمان در برنامه درسی تربیت معلم شایسته محور. مطالعات برنامه درسی، 13(50) ، 5-44.
زینی‌وندنژاد، فرشته، راشد، فاطمه. (1394). آزمون فرضیه‌های پژوهش با استفاده از مدل‌سازی معادله ساختاری، تهران: جامعه شناسان.
سراجی، فرهاد، سلیمانی، فاطمه. (1395). تحلیل موانع هوشمندسازی مدارس در مرحله اجرا بر اساس نظریه‌های نوآوری آموزشی. مطالعات برنامه درسی، 11(42153-176.
مهدوی هزاوه، منصوره؛ ملکی، حسن؛ مهرمحمدی، محمود و عباس پور، عباس. (1395). بررسی تطبیقی نظام برنامه درسی مبتنی بر شایستگی ها در برنامه تربیت معلم دوره ابتدایی کشورهای مالزی، هندوستان و ایران. مطالعات برنامه درسی،11(4123-64.
 Alagic, M. (2003). Technology in the mathematics classroom: Conceptual orientation. Journal of Computers in Mathematics and Science Teaching, 22(4), 381-399.
Badia, A., Meneses, J., Sigalés, C., & Fàbregues, S. (2014). Factors affecting school teachers’ perceptions of the instructional benefits of digital technology. Procedia – Social and Behavioral Sciences, 141, 357–362.
Beauchamp, G. & Parkinson, J. (2008). Pupils’ Attitudes towards School Science as they Transfer from an ICT-rich Primary School to a Secondary School with Fewer ICT Resources: Does ICT Matter? Educ Inf Technol, 13(2), 103–118.
Blundell, C. N. (2017). A case study of teachers transforming pedagogical practices through collaborative inquiry-based professional learning in a ubiquitous technologies environment (Doctoral dissertation, Queensland University of Technology). Retrieved from https://eprints.qut.edu.au/112463/1/Christopher_Blundell_Thesis.pdf
Blundell, C., Lee, K. T., & Nykvist, S. (2019). Using Dual Systems theory to conceptualise challenges to routine when transforming pedagogy with digital technologies. Teachers and Teaching, 25(8), 937-954.
Blundell, C., Lee, K. T., & Nykvist, S. (2020). Moving beyond enhancing pedagogies with digital technologies: Frames of reference, habits of mind and transformative learning. Journal of Research on Technology in Education, 52(2), 178-196.
Bowers, J. S., & Stephens, B. (2011). Using technology to explore mathematical relationships: A framework for orienting mathematics courses for prospective teachers. Journal of Mathematics Teacher Education, 14(4), 285–304.
Cheung, A. C. K., & Slavin, R. E. (2013). The effectiveness of educational technology applications for enhancing mathematics achievement in K–12 classrooms: A meta-analysis. Educational Research Review, 9, 88–113.
Creswell, J. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). London, England: Sage Publications.
Daly, C., Pachler, N., & Pelletier, C. (2009, May). Continuing professional development in ICT for teachers: A literature review. WLE Centre, Institute of Education, University of London, England: BECTA.
Drijvers, P. (2018). Empirical evidence for benefit? Reviewing quantitative research on the use of digital tools in mathematics education. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education; tools, topics and trends (pp. 161–178). Cham: Springer International Publishing.
Ertmer, P. A. (2015). Technology integration. In J. M. Spector (Ed.), The SAGE encyclopedia of educational technology (pp. 748–751). Thousand Oaks, CA: Sage.
Fu, J. S. (2013). ICT in education: A critical literature review and its implications. International Journal of Education and Development using Information and Communication Technology, 9(1), 112-125.
Galbraith, P., Stillman, G., Brown, J., & Edwards, I. (2007). Facilitating middle secondary modelling competencies. In C. Haines, P., Galbraith, W., Blum, & S. Khan, (Eds.), Mathematical modelling: Education, engineering and economics (pp. 130-140). Chichester, UK: Horwood.
Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Han, I., Byun, S. Y., & Shin, W. S. (2018). A comparative study of factors associated with technology-enabled learning between the United States and South Korea. Educational Technology Research and Development, 66(5), 1303-1320.
Hoyles, C. (2018). Transforming the mathematical practices of learners and teachers through digital technology. Research in Mathematics Education, 20(3), 209-228.
Hsu, S., & Kuan, P.-Y. (2013). The impact of multilevel factors on technology integration: the case of Taiwanese grade 1–9 teachers and schools. Educational Technology Research and Development, 61(1), 25–50.
Khalid, M. S., & Nyvang, T. (2014). A change agent’s facilitation process for overcoming the barriers of ICT adoption for educational administration: The case of a rural-Bangladesh vocational institution. Australasian Journal of Educational Technology, 30(5), 547-561.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
Lee, C.Y., & Chen, M. J (2016). Influence of Prior Knowledge and Teaching Approaches Integrating Non-routine Worked Examples and Digital technologies  on the Performance and Attitude of Fifth-Graders in Learning Equivalent Fractions. In P. S. Moyer-Packenham (Ed.), International Perspectives on Teaching and Learning Mathematics with Virtual Manipulatives (pp. 189-212). Cham, Switzerland: Springer.
Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review, 22(3), 215–243.
Lindsay, L. (2016). Transformation of teacher practice using mobile technology with one‐to‐one classes: M‐learning pedagogical approaches. British Journal of Educational Technology, 47(5), 883-892.
Liu, F., Ritzhaupt, A. D., Dawson, K., & Barron, A. E. (2016). Explaining technology integration in K-12 classrooms: A multilevel path analysis model. Educational Technology Research and Development, 65(4), 795–813.
Makki, T. W., O'Neal, L. J., Cotten, S. R., & Rikard, R. V. (2018). When first-order barriers are high: A comparison of second-and third-order barriers to classroom computing integration. Computers & Education, 120, 90-97.
Martin, M. O., Mullis, I. V. S., & Hooper, M. (Eds.). (2016). Methods and Procedures in TIMSS 2015. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/publications/timss/2015-methods.html
Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
Nielsen, W., Miller, A., & Hoban, G. F. (2012). The digital education revolution: New South Wales science teachers' response to laptop ubiquity. AERA Annual Meeting 2012. Retrieved from http://ro.uow.edu.au/edupapers/1086/.
Petko, D., Prasse, D., & Cantieni, A. (2018). The Interplay of School Readiness and Teacher Readiness for Educational Technology Integration: A Structural Equation Model. Computers in the Schools, 35(1), 1-18.
Puentedura, R. (2014). SAMR in the classroom. Retrieved from http://www.hippasus.com/rrpweblog/archives/2014/08/27/SAMRInTheCla ssroom.pdf
Robová, J. (2013). Specific skills necessary to work with some ICT tools in mathematics effectively. Acta Didactica Mathematicae, 35, 71–104.
Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1- 22.
Sokolowski, A., Li, Y., & Willson, V. (2015). The effects of using exploratory computerized environments in grades 1–8 mathematics: A meta-analysis of research. International Journal of STEM Education, 2(1), 1–17.
Tarhini, A., Arachchilage, N.A.G., Masa’deh, R., & Abbasi, M.S. (2015). A critical review of theories and models of technology adoption and acceptance in information system research. International Journal of Technology Diffusion, 6(4), 1–20.
Thomas, M.O.J. & Palmer, J.M. (2014). Teaching with digital technology: obstacles and opportunities. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The Mathematics Teacher in the Digital Era. An International Perspective on Technology Focused Professional Development (pp. 71-89). Dordrecht: Springer.
Tondeur, J., Van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2016). Understanding the relationship between teachers’ pedagogical beliefs and technology use in education: a systematic review of qualitative evidence. Educational Technology Research and Development, 65(3), 555-575.
Trgalová, J., & Jahn, A. P. (2013). Quality issue in the design and use of resources by mathematics teachers. ZDM – Mathematics Education, 45(7), 973–986
Tunjera, N., & Chigona, A. (2020). Teacher Educators' appropriation of TPACK-SAMR models for 21st century pre-service teacher preparation. International Journal of Information and Communication Technology Education (IJICTE), 16(3), 1–15. DOI: 10.4018/IJICTE.2020070110.
Uslu, O. (2018). Factors associated with technology integration to improve instructional abilities: A path model. Australian Journal of Teacher Education, 43(4), 31-50.
Zeynivandnezhad, F. (2018). Validation Instrument to Evaluate Students' Perception of Virtual Manipulatives in Learning Mathematics. Journal of applied measurement, 19(4), 387-412.
Zeynivandnezhad, F., & Bates, R. (2018). Explicating mathematical thinking in differential equations using a computer algebra system. International Journal of Mathematical Education in Science and Technology, 49(5), 680-704.
Zeynivandnezhad, F., Mousavi, A., & Kotabe, H. (2020). The Mediating effect of Mathematics Study Approaches on the Relationship between Mathematics Conception and Experiences of Digital Technologies. Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and Applied Research. https://doi.org/10.1080/07380569.2020.1793050 .
Zhang, Y., & Wildemuth, B. M. (2009). Qualitative analysis of content. In B. Wildemuth (Ed.), Applications of Social Research Methods to Questions in Information and Library Science (pp.308-319). Westport, CT: Libraries Unlimited.
Zheng, B., Warschauer, M., Lin, C.-H., & Chang, C. (2016). Learning in one-to-one laptop environments. Review of Educational Research, 86(4), 1052-1084.